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FREE VIBRATIONS OF A FUSED BICONICAL
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Abstract—A simple formula is obtained for the assessment of the fundamental frequency of lateral
vibrations of a fused biconical taper (FBT) lightwave coupler, subjected to initial tensile strain
(force). The obtained formula considers the nonprismaticity of the coupler, as well as the nonlinear
stress-strain relationship of the material, and can be used to determine the initial strain resulting
in a sufficiently high fundamental frequency. This formula can be applied also for the evaluation
of the tnitial tensile force, stress and strain from the measured vibration frequency.

INTRODUCTION

In fused biconical taper (FBT) couplers, the cores of the fibers are positioned very close to
each other, so that the two fundamental modes become coupled through their evanescent
fields (Miller and Chynoweth, 1979 ; Sheem and Giallorenzi, 1979 ; Sheem and Cole, 1979;
Bergh er al.. 1980 Villarruel and Moeller, 1981 ; Bures ef al., 1983 Bilodeau er al.. 1987).
In order to bring the cores in close proximity, the cladding in the midportion of the coupler
has to bc made very thin, At the same time, the coupler must be sufficiently strong, both
on a short and long time scale, and must be able to withstand, in addition to thermal and
cxternal static loading, dynamic stresses. These can occur during manufacturing, testing,
storage, shipment, installation and operation of lightwave couplers, as well as of the devices
cmploying such couplers.

The most common method of ensuring vibration stability of clectronic and optical
devices is to support and stiffen their structures to an extent when their fundamental natural
frequency is sufficicntly higher than the highest frequency of the expected excitations. In
the case of a FBT coupler, it is the initial strain which “stiffens™ the coupler's structure,
Such a strain can be caused by the thermal contraction mismatch of the coupler and its
base (substrate), or can be even applied deliberately, if there is a nced to improve the
dynamic stability of the coupler.

In the analysis below we develop a simple formula for the assessment of the fun-
damental natural frequency of the coupler structure. This formula is intended to be used
to establish the initial strain which would result in a sufficicntly high vibration frequency.
Then a designer should make sure that this strain is acceptable from the standpoint of the
long-term reliability (“static fatigue™) of the material.

TENSILE FORCE

Let a FBT coupler be subjected to an elongation AZ (Fig. 1). If this elongation is due
to the thermal contraction mismatch of the coupler and its base, it can be evaluated using
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Fig. [. Fused biconical taper (FBT) lightwave coupler.
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an analysis in Appendix A. The equilibrium condition for any portion of the coupler
indicates that the resulting axial force P is the same for all the cross-sections of the coupler.

We assume that the actual coupler geometry can be approximated by two circular
truncated cones connected by a circular cylindrical midportion, as shown in Fig. | in broken
lines. Such an approximation is thought to be adequate. as long as the radii r. and r; of the
larger and the smaller bases of the truncated cones are such that the areas of the cor-
responding circles are equal to the actual cross-sectional areas. With this assumption, the
stress a(x) in any cross-section x of the coupler can be evaluated as

ry

o (x) =g (

0(x) = ——

where g = P/nr{ is the stress in the fused midportion, and the radius r(x) of the coupler
changes over its length as follows:

X
fc—(rc—rf)/—. for0 < x </,

r= re, rOl' /CS.YS/Q-'}-/L (2)

f—x
"c—("c“"r)“/T*. for/ .+ x <!

<

Here 7, 7, and 7, arc the total length of the coupler, the length of one of its conical parts,
and the length of the fused midportion, respectively. The origin of the coordinate x is at
the left end of the coupler.

It has been found (Mallinder and Proctor, 1964 ; Krause et «l., 1979 ; Glasemann et
al., 1988) that the clastic behavior of silica fibers subjected to tensile strains not exceeding
5% can be described by the relationship:

6 = Eue(l + laz). 3)
Here o is the stress, ¢ is the strain, £, is Young's modulus of the material for very low

strains (when the nonlincar behavior of the material need not be accounted for), and « is
the parameter of nonlincarity. From (3) we obtain:

e N ]
E—a'<\/l+2dgi;—-|)—a<\/l+ﬂ I':_])’ 4)

3 (5

Using (4), we present the overall elongation A/ of the coupler as

A/=J-) e(x)dx = -q \/ +[i“r~idv—1>. 6)

The integral in this equation can be written as follows:

J\/I+/f' 2[ \/l+/3 T dvt SIH B = 2l o+ il %)

0

where the factors
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[ frog
ﬂ_ZL 1+ 4 Cdx ®

fr=J1+8 ®

and

consider the effects of the magnitude of the applied force and the material’s nonlinearity
on the elongations of the conical and the fused portions, respectively. The factor £, can be
evaluated. considering (2). as

1 {% ] o L[~ JIE
- C—=dy = l .’Td
Je /cJ:) L+5 r*(hr re—rel, +b re r

1 - . JU+B+8 )
= A S+ = p 1+ +fpln Yt "5 ), 10
l——p<\/ Poi=p 14+ o BNV T o

where p = ri/r, is the radii ratio. The formulae (6) and (7) result in the following equation
which can be used to determine the parameter ff, and then the axial force P, for the given
overall strain A//7:

A7

2/ £t
= &-[—,—Mﬂ. P+ [—fr(/f)"l]- (th

The strain cnergy responsible for the long-term reliability of the coupler can be evalu-
ated as

L7 P (0)de PP[7 d
o [ e[ 0
2 1] [ZA(.\) 27! [}] [ir-

The expression for Young's modulus E can be found from (3) by differentiation

d Crt
E=£= Eu(l"’”al:):Eo\/l‘f‘li‘C’?-
de re

Then the formula (12) yiclds:

P {7 d.
sz.) J “‘j{”‘ ..... =2V + Vity, (13)
22E0 o r /B2 412
where
v P? j’» dx A O dr
¢ an()f‘; 0 r /Ifz"‘.z-{..r: 2nE0 rc—rf e r,llglr(g'*'r:
P? r,_.(\/l'v:i-‘ﬁ?+[3) nEqri pp’? JI1+B+p
e ~i~-2ln N e In = (14)
daEy{r. —re}fire [{rf+\/[fzr{+rg « P S4B+ P
and
2 2 4
v PP _mEri B (15)

T umESSTEE 8 Jief

are energies per unit fength of the conical and the cylindrical portions of the coupler,
respectively. As follows from (14) and (15). the strain energy per unit length of a conical
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portion is by a factor of

"=Ké=p,/l+ﬁzln VI+B+8
Vi (=pB " J1+Bp +8p

smaller than the energy per unit length of the fused midportion.

(16)

FUNDAMENTAL FREQUENCY

The total energy of free vibrations of the coupler structure is due to its kinetic energy

T—lf( <6w)3d 17
—iom(-Y)'aT X (17)

I {7 (owY

In these formulae, w = w(x, ) are the lateral deflections of the coupler, m(x) = n(y/g)r’(x)
is its mass per unit length, y is the specific weight of the coupler’s material, g is the
acceleration duc to gravity, and /(x) = (n/4)r'(x) is thc moment of inertia of the coupler’s
cross-sectional arca. The formula (18) reflects an obvious assumption that the vibration
amplitudes are small and therefore the additional strain energy due to axial deformations
caused by lateral deflections need not be considered. In addition, it is also assumed that the
tensile foree is large enough and the flexural rigidity of the coupler is small enough to
neglect the strain energy duc to bending deformations (see Appendix B).

For the fundamental mode (i = 1), the formulae (17) and (18) yield :

and the strain energy

Y o aiee . a P,
T=>A"wCcos” wt, = -— - A4°sIn° wl,
17 4 ¢

where the constant C is
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The condition T, = V., results in the following formula for the vibration frequency :

x g P
“2/2\/7 C (19)

This formula indicates, particularly, that the stress o; in the fused portion of the coupler
due to the initial strain resulting in the desired (or required) lowest vibration frequency o,
can be evaluated by the formula:

ry

v C (wt*Y
i) e



Table 1

[ 0 002 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08

1 ] 1.0002 1.0008 1.0018 1.0032 1.0050 1.0198 1.0440 1.0770 1.1180 1.1662 1.2207 1.2806

¥ ! 1.00000 1.00006 1.00013 1.00024 1.00036 1.00296 1.00357 1.00631 1.00979 1.01397 1.01886 1.02429

to = (0/E0), % 0 0.0033 0.0133 0.0300 0.0533 0.0833 0.3333 0.7500 1.3333 2.0833 3.0000 4.0833 5.3333

w=fi~11.% 0 00033 0.0133 0.0300 0.0533 0.0833 0.3300 0.7333 1.2833 1.9667 2.7700 3.6783 4.6767

A1), % o 00010 0.00466 0.00985 0.0195 0.0291 0.1332 1.2608 0.4571 0.7019 0.9908 1.3193 1.6810
’ (0.0010)  (0.00397)  (0.00896)  (0.0159)  (0.0249)  (0.0986) (0.2190)  (0.3833)  (0.5875)  (0.8274)  (1.0987) (1.3969)

Paf 0 00773 0.3093 0.6959 1.2372 1.933 2732 17.40 30.93 48.33 69.59 94.72 123.72

121dnod aaemiydy 1 g4 © Jo suonniqia 3214

6v1t



330 E. SuHir

NUMERICAL DATA

(1) The factors f; and /.. computed for the radii ratio p = 0.08, are shown in Table 1.
As evident from this table. the f; values are substantially larger than the f, values. This is
due to the relatively high compliance of the fused midportion. Table 1 also indicates that
~actual” (nonlinear) strains & in the fused midportion, calculated, in accordance with the
formula (4), for the given force P (or for the given stress g;) are appreciably smaller than
the "nominal™ (linear) strains ¢, = ¢/ E,.

{2} The forces P and the strains AZ/Z. shown in Table 1, were obtained for the case
£ =385 mm. /=15 mm. r, =001 mm and r. = 0.125 mm, assuming E, = 10.5x 10°
psi = 7384 kg mm ™~ ° = 72 GPa, a = 6 [see, for instance, Glasemann et a/. (1988)]. The
calculated data show that rather low overall strains AZ/ result in significantly higher strains
¢ in the fused midportion of the coupler. Indeed., let, for instance, the overall displacement
of the coupler be A7 = 0.0513 mm, so that AZ/¢ = 0.1332%. Then, as follows from Table
1 data, the strain in the fused midportion is & = 0.33%, and the elongation of this portion
is A/ = g/ = 0.038 mm. Thus, the elongation of the conical parts, whose total length is
2/, =27.0 mm, i.c. by a factor of 2.35 greater than the length of the fused midportion, is
A/ = 0.0513~0.0380 = 0.0133 mm, which is only about 25% of the overall efongation.
Clearly, the stresses in the fused portion can be easily determined from the calculated 6,/ £,
ratios.

{3) The factor » calculated by the formula (16) for the radii ratio p = {ry/r.) = 0.08
and the nonhincarity parameter § = 0.2 is only # = 0.081. Then the total strain energy of
the conical parts is only 16% of the entire strain energy, despite the fact that these portions
account for about 70% of the coupler’s length, and for more than 99% of its volume.

(4) Let us assume, for instance, that the “equivalent”™ radius of the coupler is
ro = {r.+r)/2 = 0.0675 mm. Then, assuming £ = E;and { = |, and using formula (B6) of
Appendix B we obtain P, = 0.00387 gf. Hence, as one can see from Table | data, the coupler
structure can be indeed considered simply supported at the ends even for very low values
of the tensile foree P

(5) Let the highest expected excitation frequency be, say, 2000 Hz. With the factor of
sifety equal to two, the required fundamental frequency is 4000 Hz. For the coupler in
guestion we obtain: C = 16.866 x 10 °*, g, = 67.8 kg mm 2, & = 0.894%. Thus, with the
chosen factor of safety, the coupler’s material should be able to withstand long-term strains
of about 0.9%.

CONCLUSION

The developed formula for the fundamental vibration frequency of FBT couplers can
be helpful in the structural analysis and mechanical (““physical™) design of such couplers.
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APPENDIX A. INITIAL STRAIN CAUSED BY THE THERMAL CONTRACTION MISMATCH
OF THE COUPLER AND ITS BASE

Let a coupler manufactured with an initial curvature

. rX
w{x) =ﬁ,sm—[—

at the elevated temperature be cooled down to the room or testing temperature. In this formula w(x) is the

deflection function, ¢ is the length of the coupler’s base, and f; is the maximum initial deflection of the coupler.
The length of the curved coupler can be approximately evaluated as

s:J ,/l+{w'(.\‘)]’d.\';J. (l+;[w'(.\‘)]:)dx=((!+t':). (A

where ¢ = nfy/2/. Solving (A1) for f,. we obtain:
R A S
};, = IE % st —{°.
The total change in the initial deflection f,, caused by the change in the length # of the coupler’s base and in the
length v of the coupler itself can be evaluated as the complete differential

o o o by .
dfy = Trar s s - aiplds=(=chdr). (A2)

T oy
The change Ax in the length of the coupler can be found as
As = 5 =5, = 5,{] =2,M8) ~ 5, = —5,%,01, (A3)
or, considering (A1),
Av = =/ (4%, AL

Here @, is the cocflicient of thermal expansion (contraction) of the coupler’s material, £, is the initial length of
the buse, and Az is the chaage in temperature. The change A/ in the length of the base is

A =ty =C4(l =2, A0) =2y = —Zyx AL (Ad)
where a, is the coetlicient of thermal expuansion of the base material. Since the coupler is made of doped silica,
and its buse is made of regular silica, 2, is, us a rule, larger than x,.

Considering small deflections, we omit in the above formulac the ¢ value, which is small compared to unity,
and replace the differentials in (A2) with finite ditferences, Then eqns (A2). (A3) and (A4) yield :

ArA 25
af= -8, 250 AsAl (A3)
ne nfy

where Ax = 2, ~ 2, Clearly, formuta (AS) can be applied as long as the initial deflection £, does not exceed its
reduction Af,. Putting Af, = —/,. we find that formula (AS) can be used if the deflection f is larger than

4
5, =% Jmam, (A8

otherwise the drop in temperature will result in a tensile strain in the coupler structure. This strain can be
determined as a difference between the total thermal contraction mismatch strain AxA¢ and its portion

[, = ’%(;%) (A7)

required to bring the initial deflection to zero. Formula (A7) can be obtained from (A6) by solving this equation
for e, = A2Ar.
Thus. the initial tensile strain in the coupler due to its thermal contraction mismatch with the base, can be

cvaluated by the formula
Af 2 { fuX
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APPENDIX B. EFFECT OF THE BOUNDARY CONDITIONS AND THE TENSILE FORCE ON
THE FUNDAMENTAL FREQUENCY

{1) Consider, for the sake of simplicity, a uniform beam clamped at its ends and subjected to a tensile force
P. Using the equation of motion in the form

Fw_Fw Fw
Ela-t—‘ “PE\’T +m?‘?— =0

[see. for instance. Timoshenko and Young (1955)]. seeking its solution in the form of an expansion

wix.t) = i X.(x)sinw,t. (B

tw i
and using the boundary conditions
X0)=X/(). X({0)=X()=0

for the vibration mode function X,(x), we obtain the following equation for the frequency w; of the ith mode of
vibrations:

2y,8,(coshu,cosv,— 1) + (§ — 77y sinhy, sine, = 0. {B2)

Here, u, = y,Z. v, = d,/, and the parameters y, and §, are related to the frequency w, as follows:

P, ‘gL
Y, = S5 7 [

(83
5 p l + 4[;:’/ Y41
= oem e ..H','()"
%=\ 281 prme
These formulae indicate that if the force P significuantly exceeds the value
, = Zm,\/ Elm, (B4)
theny, =0, 9, = ﬁ/‘[;‘—l and eqn (B2) reduces to a frequency equation sin ¢, = 0 for a simply-supported bar, In
such a case
o i [PV E "
i) = ST =T m TN\ m 85
and formula (B4) yiclds:
in\ 1+/2 :
P.==2(1+ﬁ)(%’-) szil——z‘l-n’s?;-. (B6)

{2} Let us now assess the second (bending) term in the equation

L[ fowy 1 o'Wy
V= EPL (ﬂ) dx+ EL 51(.v)(5F) dx (B7)

for the strain energy duc to both tension and bending of a beam [see, for instance, Timoshenko and Young
(1955)]. Assuming again that the flexural rigidity £/ is constant and is equal to (#/4) E,r;, sceking the deflection
function w{x, ¢} in the form (B!} and using the first formula in (B5) for the vibration mode, we conclude that the
bending term contributes very little to the total strain energy, if the tensile force P is significantly lurger than the
value

Wt
P, =r-2«132~‘;.

(B8)
Comparing this formula with (B6), we also conclude that if the condition P » P, is fulfilled, the condition 2 » P,
is fulfilled as well, i.c. if the tensile force £ is large cnough so that the coupler can be considered simply supported
at its ends, it is also large cnough so that the cffect of bending would not have to be accounted for. Thus, for a
sufficiently large tensile force (P » P,), the strain energy of the coupler can be assessed by a simple formula

t [’ {owV
setof (o .



