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Abstract-A simple fo~ula is obtained for the assessment of the fundamental frequency of lateral
vibrations of a fused biconical taper (FBT) lightwave coupler. subjected to initial tensile strain
(force). The obtained formula considers the nonprismaticity of the coupler. as well as the nonlinear
stress-strain relationship of the material. and can be used to determine the initial strain resulting
in a sufficiently high fundamental frequency. This formula can be applied also for the evaluation
of the initial tensile force. stress and strain from the measured vibration frequency.

INTRODUCTION

In fused biconical taper (FBT) couplers. the cores of the fibers are positioned very close to
each other. so that the two fundamental modes become coupled through their evanescent
fields (M iller and Chynoweth. 1979; Sheem and Giallorenzi. 1979; Sheem and Cole. 1979;
Bergh ct al.. 1980; Villarruel and Moeller. 1981; Bures et al.• 1983: Bilodeau et al.. 1987).
In order to bring the cores in close proximity. the cladding in the midportion of the coupler
has to be made very thin. At the same time. the coupler must be sufficiently strong. both
on a short and long time scale. and must be able to withstand. in addition to thermal and
external static loading. dynamic stresses. These can occur during manufacturing. testing,
sIOf<lge. shipment. installation and operation of lightwave couplers. as well as of the devices
employing such couplers.

The most common method of ensuring vibration stability of electronic and optical
devices is to support and stiffen their structures to an extent when their fundamental natural
frequency is sulliciently higher than the highest frequency of the expected excitations. In
the case of a FBT coupler, it is the initial strain which "stiffens" the coupler's structure.
Such a strain can be caused by the thermal contraction mismatch of the coupler and its
base (substrate). or can be even applied deliberately. if there is a need to improve the
dynamic stability of the coupler.

In the analysis below we develop a simple formula for the assessment of the fun­
damental natur.1I frequency of the coupler structure. This formula is intended to be used
to establish the initial strain which would result in a sufficiently high vibration frequency.
Then a designer should make sure that this strain is acceptable from the standpoint of the
long-term reliability ("static fatigue") of the material.

TENSILE FORCE

Let a FBT coupler be subjected to an elongation /it (Fig. I). If this elongation is due
to the thermal contraction mismatch of the coupler and its base. it can be evaluated using

--1-- I, --ro---

Fig. I. Fused biconicaltaper (FBD lightwave coupler.
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an analysis in Appendix A. The equilibrium condition for any portion of the coupler
indicates that the resulting axial force P is the same for all the cross-sections of the coupler.

We assume that the actual coupler geometry can be approximated by two circular
truncated cones connected by a circular cylindrical midportion. as shown in Fig. I in broken
lines. Such an approximation is thought to be adequate. as long as the radii r. and rr of the
larger and the smaller bases of the truncated cones are such that the areas of the cor­
responding circles are equal to the actual cross-sectional areas. With this assumption. the
stress O"(x) in any cross-section x of the coupler can be evaluated as

P rl
O"(x) =-,- = O"r -,-.

nr(x) r(x)
( I )

where O"r = Pinrl is the stress in the fused midportion. and the radius r(x) of the coupler
changes over its length as follows:

r = rr.

for 0 ~ x ~ (c

(2)

Here I. I. and I r arc the total length of the coupler. the length of one of its conical parts.
,lOd the length of the fused mid portion. respectively. The origin of the coordinate x is at
the left end of the coupler.

It has been found (Mallinder and Proctor. 1964; Krause c( a/.• 1979; Glasemann c(

a/.• 19XX) that the clastic behavior of silica libers subjectcd to tensile str;tins not exceeding
5% can be described by the relationship:

(j = Eol:( I + ~CLI:). (3)

Here (j is the stress. I: is the strain. Eu is Young's modulus of the material for very low
strains (when the nonlinear behavior of the material need not be accounted for). and CL is
the parameter of nonlinearity. From (3) we obtain:

(4)

where

Using (4). we present the overall c1ong,ttion t!J.( of the coupler as

J
.-

r I r r~

t!J.! =1I:(x)dx = - (1 I +(l~ ~dX-().
u CL u r

The integral in this equation can be written as follows:

where the factors

(5)

(6)

(7)
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and

(8)

If =JI +fJ2 (9)

consider the effects of the magnitude of the applied force and the material's nonlinearity
on the elongations of the conical and the fused portions. respectively. The factor fc can be
evaluated. considering (2). as

r
2

I J"I + fJ2 ~ dx =--
r re-rr "

(to)

where fl = r../re is the radii ratio. The formulae (6) and (7) result in the following equation
which can be used to determine the parameter p. and then the axial force P. for the given
ovemll strain ,1//1:

(II)

The strain energy responsible for the long·term reliability of the coupler can be evalu­
ated as

(12)

The expression for Young's modulus E can be found from (3) by differentiation:

J
----

da ,~
£ = - = £u(l +!XI:) = Eo 1+1/",.de ,.

Then the formula (12) yields:

( 13)

where

and

(15)

are energies per unit length of the conical and the cylindrical portions of the coupler.
respectively. As follows from (14) and (15). the strain energy per unit length ofa conical
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portion is by a factor of

E. SLHIR

'1 = V~ = pfi+i3i In Ji+!,+ {3
Vf (l-p){3 JI +{3-p-+{3p

(16)

smaller than the energy per unit length of the fused midportion.

FUNDAMENTAL FREQUENCY

The total energy of free vibrations of the coupler structure is due to its kinetic energy

and the strain energy

I fl (aw)2
T= 2Jo m(x) at dx

I fl (aw)2
V = 2P Jo ox dx.

(17)

( 18)

In these formulae. If =: w(x, t) are the lateral deflections of the coupler, m(x) = rr(y/g)r\'()
is its mass per unit length. y is the specific weight of the coupler's material, 9 is the
acceleration due to gravity, and [(x) = (rr/4)r4 (x) is the moment of inertia of the coupler's
cross-sectional area. The formula (18) reflects an obvious assumption that the vibration
amplitudes are small .lOd therefore the additional strain energy due to axial deformations
caused by lateral deflections need not be considered. In addition, it is also assumed that the
tensile force is large enough and the llexural rigidity of the coupler is small enough to
neglect the strain energy due to bending deformations (see Appendix B).

For the fundamental mode (i = I), the formulae (17) and (18) yield:

y , , ). ,
T = A -urt C eos- WI,

1I

where the constant Cis

n 2 P , . ,
V =- _. A . Sin' wI

4 I .

r" r" - rr [I I (1,,)2 I Ie. t e I t e ]- 2 ------, + - - - - - Sin 2n - - -, cos 2n -
t t e 8rr- 4 { 4n I I 8n- t

I (re)2 (te I te) I (rf)2[tf I Ie I te + t f ]+ - - - - -sin2n- + - - - + -sin2n- - -sin2n-- .
2 t t 2n t 4 t I 2n I 2n I

The condition Ton•• = Vm•• results in the following formula for the vibration frequency:

W = .!:, Jrt. !:..
21- y C

( 19)

This formula indicates, particul'lrly, that the stress (Jf in the fused portion of the coupler
due to the initial strain resulting in the desired (or required) lowest vibration frequency w,
can be evaluated by the formula:

y C (W{2)2
(Jr = 2-- - .

9 n J rr
(20)
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Table I :So

0'

Il 0 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.ll ~
P.

Ji I 1.0002 1.0008 1.0018 1.0032 1.0050 1.0198 1.0440 1.0770 1.1180 1.1662 1.2207 1.2ll06 0
='

J~ I ooסס1.0 OO6סס.1 1.00013 1.00024 1.00036 1.00296 1.00357 1.00631 1.00979 1.01397 1.01886 1.02429 '"0
(urlE.). % 0 0.0033 0.0133 0.0300 0.0533 0.0833 0.3333 0.7500 1.3333 2.0ll33 OOסס.3 4.0833 5.3333

..,
£. '"£, = (Ji- I,':x). % 0 0.0033 0.0133 0.0300 0.0533 0.0833 0.3300 0.7333 1.2833 1.9667 2.7700 3.6783 4.6767 ."

0.0010 0.00466 0.OO9ll5 0.0195 0.0291 0.1332 1.26011 0.4571 0.7019 O.9'JOll 1.3193 1,61UO til

(Mil). % 0 -l
(0.0010) (0.00397) (0.00896) (0.0159) (0.0249) (0,0986) (0.2190) (0.3833) (0.5875) (0.8274) (1.0987) (1.3969) t§:P,gf 0 0.0773 0.3093 0.6959 1.2372 1.933 7.732 11.40 30.93 48.33 69.59 94.72 123.72

i
"".,n
rl
0
C
'0
ii"...

.....
~
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NUMERICAL DATA

( I) The factors j~ and j~. computed for the radii ratio p =0.08. are shown in Table I.
As evident from this table. the Ir values are substantially larger than the h values. This is
due to the relatively high compliance of the fused midportion. Table I also indicates that
"actual" (nonlinear) strains £1' in the fused midportion. calculated. in accordance with the
formula (4). for the given force P (or for the given stress O"f) are appreciably smaller than
the "nominal" (linear) strains £0 = O"r!Eo.

(::!) The forces P and the strains !it/t. shown in Table I. were obtained for the case
( = 38.5 mm. If = 11.5 mm. rf = 0.01 mm and rc = 0.125 mm. assuming Eo = 10.5 X 106

psi = 7384 kg mm- z = 7::! GPa, a = 6 [see, for instance. Glasemann et af. (1988)). The
calculated data show that rather low overall strains !itlt result in significantly higher strains
ef in the fused midportion of the coupler. Indeed, let, for instance. the overall displacement
of the coupler be 'V = 0.0513 mm, so that !itlt = 0.1332%. Then. as follows from Table
I data. the strain in the fused midportion is £1' = 0.33%, and the elongation of this portion
is !iff = Ef!f = 0.038 mm. Thus, the elongation of the conical parts, whose total length is
2/e = 27.0 mm, i.e. by a factor of 2.35 greater than the length of the fused midportion, is
!if, = 0.0513 - 0.0380 = 0.0133 mm, which is only about 25% of the overall elongation.
Ckarly. the stresses in the fused portion can be easily determined from the calculated O"rI £0
ratios.

(3) The factor tl calculated by the formula (16) for the radii ratio I' = (rrlre ) = 0.08
and the nonlinearity parameter IJ = 0.2 is only t'/ = 0.081. Then the total strain energy of
the conical parts is only 16% of the entire strain energy, despite the fact that these portions
account for .Ioout 70'1.. of the coupler's length. and for more than 99% of its volume.

(4) Let us assume, for instance. that the "equivalent" radius of the coupler is
r ll = (r, + rl)/2 = 0.0675 nllll. Then, assuming £ = Eo and i = I. and using formula (B6) of
Appendix B we obtain P, = 0.00387 gf. Hence, as one can see from Table I data, the coupler
structure can he indeed considered simply supported at the ends even for very low values
of the tensile fon.:e P.

(5) Let the highest expected excitation frequency be, say, 2000 Hz. With the factor of
safety equal to two, the reljuired fundamental frequency is 4000 Hz. For the coupler in
question we obtain: C = 16.866 x 10 N, 0"1' = 67.8 kg mm" 2,1':1' = 0.894%. Thus, with the
chosen factor of safety, the coupler's material should be able to withstand long-term strains
of about 0.9'%.

CONCLUSION

The developed formula for the fundamental vibration frequency of FBT couplers can
be helpful in the structural analysis and mechanical ("physical") design of such coupiers.

AcklllJll,,,,,~q<'1IIefl/s-The aUlhur a.:knowledges and Ihanks R. D. Tuminaro, C. R. Kurkjian. 1. T. Krausc, L. L.
lJIyler. Jr and L. T. Manzione for uscful diseussions and valuable .:ommenls.
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APPENDIX A. INITIAL STRAIN CAUSED BY THE THERMAL CO:"TRACTION MISMATCH
OF THE COUPLER AND ITS BASE

Let a coupler manufactured with an initial curvature

nx
",(x) =/., sin 7

at the elevated temperature be cooled down to the room or testing temperature. In this formula ",(x) is the
deflection function, I is the length of the coupler's base. and 10 is the maximum initial deflection of the coupler.
The length of the curved coupler can be approximately evaluated as

.f = r' JI +!II"(x)j'dx ~ f' (1 + ~[",·(x)j')d.t = ((I +c!).Jo 0 ~

where (' = n/.,/21. Solving (A \) fllr.(". we obtain:

(AI)

The total ch:lnge in the initial ddkction{" caused hy the change in the length I of the coupler's b<lse and in the
length .\' of the coupler itself can he evalualcd as the complete ditferenti:t1

(A2)

The dl:lnge As in the length of the coupler can he found as

(A3)

or. considering (A I).

Ilere Of, is the coellicicnt of thermal expansion (contraction) of the coupler's material. I. is the initial Icngth of
the base, and l:>l is the change in temperature. The change l:>( in the length of the base is

(A4)

where Of! is the coellicient of thermal expansion of the base material. Since the coupler is made of doped silica.
and its basc is made of regular silica. ::I, is. as a rule. larger than ::I l'

Considering small ddlections. we omit in the above formulae the ('1 value, which is small compared to unity,
and rcpl;lce the differentials in (A2) with finite differences, Then eqns (Al), (A3) and (A4) yield:

(AS)

where l:>::1 = ::I, - ::11' Clearly, formula (AS) can be applied as long as the initial deflection I. docs not exceed its
reduction Ii};,. PUlling lif. = -};" we lind that formula (AS) can be used if the det1cction/o is larger than

to ~f = -...;2l:>::IAt.
• n

(M)

otherwise the drop in temperature will result in a lensile strain in the coupler structure. This strain can be
determined as a difference hetween the lotalthermal contraction mismatch strain l!>::I1it and its portion

(A7)

required to bring the initial defl\."Ction to 7.ero. Formula (A7) can be obtained from (A6) by solving this equation
for r.. = Ii:!AI.

Thus. the initial tensile strain in the coupler due to its thermal contraction mismatch with the base. can be
evaluated hy the formula

(AS)
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APPENDIX B. EFFECT OF THE BOUNDARY CONDITIONS AND THE TENSILE FORCE ON
THE FUNDAMENTAL FREQUENCY

(I) Consider. for the sake of simplicity. a uniform beam clamped at its ends and subjected to a tensile force
P. Using the equation of motion in the form

(see, for instance. Timoshenko and Young (1955»). seeking its solution in the form of an e:'tpansion

"w(x. t) = L X,(x) sin Wit.
,_I

and using the boundary conditions

X,(O) = X,(t). X;(O) = X;(t) = 0

(81)

for the vibration mode function X,(x), we obtain the following equation for the frequency w, of the ith mode of
vibrations:

2YitSi(eosh lI,eosl',-I) + (tSi -yi) sinh II, sin t', = O.

Here. u, = '1,1. 1'1 = tS,t. and the parameters 'I, and ,), are related to the frequency 0J, as follows:

J g
-~-

P 4£1.
"= -~( I+-"'(t)'-I)" 2£1 pt'

J j
----_._---

P 4£1.
,5, =- -. ( 1+';'11I<0; + I)

2£1 p'

These formulae indicate that if thc fl'rcc P significantly c:'tcecds thc valuc

P, = 2w,jEIIII.

(82)

(83)

(84)

thcn ,', '"' O. ,5, = jP/£I. and elln (82) rcduces to a frcljuency cljuation sinl', = 0 for a simply.supported bar. In
such a case

iltx
X,(x) = sin{'

and formula (84) yields:

(85)

(2) Let us now assess the second (bending) term in the equation

I r' (OW)2 I rl (0 2W)2
V =2p)o ax dx+ 2)0 £/(x) ox l dx

(86)

(87)

for the strain energy due: to both tension and bending of II beam [see. for instunee. Timoshenko and Young
(1955»). Assuming again that the nexuml rigidity £1 is constant and is equal to (1t/4)£or~. seeking the denl.'Ction
function w(x. I) in the form (8 I) and using the first formula in (85) for the vibration mode. we conclude that the
bending term contributes very lillIe to the total strain energy. if the tensile force P is significantly larger than the
value

.' tt' r~p = " _.£_.
• 2 (t·

(B8)

Comparing this formula with (86). we also conclude that if the condition P» p. is fulfilled. the condition P» p.
is fulfilled as well. i.e. if the tensile force I'is large enough sc that the coupler cun be considered simply supportcd
al its ends. it is alsc large enough so that the effect of bending would not have to be accounted for. Thus. for a
sufficiemly large tensile force (P » 1'.), the slrain energy of the coupler cun be assessed by a simple formula

I r'(0",)1
V = i I' )0 ax dx. (B9)


